lab_7 package
Submodules
Neural machine translation module.
- class lab_7_llm.main.LLMPipeline(model_name: str, dataset: TaskDataset, max_length: int, batch_size: int, device: str)
Bases:
AbstractLLMPipeline
A class that initializes a model, analyzes its properties and infers it.
- __init__(model_name: str, dataset: TaskDataset, max_length: int, batch_size: int, device: str) None
Initialize an instance of LLMPipeline.
- Parameters:
model_name (str) – The name of the pre-trained model
dataset (TaskDataset) – The dataset used
max_length (int) – The maximum length of generated sequence
batch_size (int) – The size of the batch inside DataLoader
device (str) – The device for inference
- _abc_impl = <_abc._abc_data object>
- analyze_model() dict
Analyze model computing properties.
- Returns:
Properties of a model
- Return type:
- class lab_7_llm.main.RawDataImporter(hf_name: str | None)
Bases:
AbstractRawDataImporter
A class that imports the HuggingFace dataset.
- _abc_impl = <_abc._abc_data object>
- class lab_7_llm.main.RawDataPreprocessor(raw_data: DataFrame)
Bases:
AbstractRawDataPreprocessor
A class that analyzes and preprocesses a dataset.
- _abc_impl = <_abc._abc_data object>
- class lab_7_llm.main.TaskDataset(data: DataFrame)
Bases:
Dataset
A class that converts pd.DataFrame to Dataset and works with it.
- __init__(data: DataFrame) None
Initialize an instance of TaskDataset.
- Parameters:
data (pandas.DataFrame) – Original data
- __len__() int
Return the number of items in the dataset.
- Returns:
The number of items in the dataset
- Return type:
- class lab_7_llm.main.TaskEvaluator(data_path: Path, metrics: Iterable[Metrics])
Bases:
AbstractTaskEvaluator
A class that compares prediction quality using the specified metric.
- __init__(data_path: Path, metrics: Iterable[Metrics]) None
Initialize an instance of Evaluator.
- Parameters:
data_path (pathlib.Path) – Path to predictions
metrics (Iterable[Metrics]) – List of metrics to check
- _abc_impl = <_abc._abc_data object>
Web service for model inference.
- lab_7_llm.service.init_application() tuple[FastAPI, LLMPipeline]
Initialize core application.
Run: uvicorn reference_service.server:app –reload
- Returns:
Instance of server and pipeline
- Return type: