NLI
Models
Model |
Lang |
---|---|
RU |
|
RU |
|
EN |
|
EN |
Datasets
cointegrated/nli-rus-translated-v2021
Lang: RU
Rows: 19647
Preprocess:
Select
dev
split.Filter the dataset by the column
source
with the valuemnli
.This step you should implement in
stubs.labs.lab_7_llm.main.RawDataImporter.obtain()
.
Leave only columns
premise_ru
,hypothesis_ru
andlabel
.Rename column
premise_ru
topremise
.Rename column
hypothesis_ru
tohypothesis
.Rename column
label
totarget
.Delete empty rows in dataset.
Delete duplicates in dataset.
Map
target
with class labels.Reset indexes.
-
Lang: RU
Rows: 307
Preprocess:
Select
terra
subset.Rename column
label
totarget
.Delete duplicates in dataset.
Delete empty rows in dataset.
Reset indexes.
-
Lang: RU
Rows: 2490
Preprocess:
Select
ru
subset.Rename column
label
totarget
.Delete duplicates in dataset.
Delete empty rows in dataset.
Reset indexes.
-
Lang: EN
Rows: 5463
Preprocess:
Select
qnli
subset.Rename column
question
topremise
.Rename column
sentence
tohypothesis
.Rename column
label
totarget
.Delete duplicates in dataset.
Delete empty rows in dataset.
Map
target
with class labels.Reset indexes.
-
Lang: EN
Rows: 9815
Preprocess:
Select
mnli
subset.Rename column
label
totarget
.Delete duplicates in dataset.
Delete empty rows in dataset.
Reset indexes.
Supervised Fine-Tuning (SFT) Parameters
Note
Set the parameter learning_rate=1e-2
for the
cointegrated/rubert-tiny-bilingual-nli
model as SFT parameter.
Metrics
Accuracy