NLI

Models

Model

Lang

cointegrated/rubert-base-cased-nli-threeway

RU

cointegrated/rubert-tiny-bilingual-nli

RU

cross-encoder/qnli-distilroberta-base

EN

MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli

EN

Datasets

  1. cointegrated/nli-rus-translated-v2021

    1. Lang: RU

    2. Rows: 19647

    3. Preprocess:

      1. Select dev split.

      2. Filter the dataset by the column source with the value mnli.

        1. This step you should implement in stubs.labs.lab_7_llm.main.RawDataImporter.obtain().

      3. Leave only columns premise_ru, hypothesis_ru and label.

      4. Rename column premise_ru to premise.

      5. Rename column hypothesis_ru to hypothesis.

      6. Rename column label to target.

      7. Delete empty rows in dataset.

      8. Delete duplicates in dataset.

      9. Map target with class labels.

      10. Reset indexes.

  2. Russian Super GLUE TERRA

    1. Lang: RU

    2. Rows: 307

    3. Preprocess:

      1. Select terra subset.

      2. Rename column label to target.

      3. Delete duplicates in dataset.

      4. Delete empty rows in dataset.

      5. Reset indexes.

  3. XNLI

    1. Lang: RU

    2. Rows: 2490

    3. Preprocess:

      1. Select ru subset.

      2. Rename column label to target.

      3. Delete duplicates in dataset.

      4. Delete empty rows in dataset.

      5. Reset indexes.

  4. GLUE QNLI

    1. Lang: EN

    2. Rows: 5463

    3. Preprocess:

      1. Select qnli subset.

      2. Rename column question to premise.

      3. Rename column sentence to hypothesis.

      4. Rename column label to target.

      5. Delete duplicates in dataset.

      6. Delete empty rows in dataset.

      7. Map target with class labels.

      8. Reset indexes.

  5. GLUE MNLI

    1. Lang: EN

    2. Rows: 9815

    3. Preprocess:

      1. Select mnli subset.

      2. Rename column label to target.

      3. Delete duplicates in dataset.

      4. Delete empty rows in dataset.

      5. Reset indexes.

Supervised Fine-Tuning (SFT) Parameters

Note

Set the parameter learning_rate=1e-2 for the cointegrated/rubert-tiny-bilingual-nli model as SFT parameter.

Metrics

  • Accuracy