NLI
Models
Model |
Lang |
|---|---|
RU |
|
RU |
|
EN |
|
EN |
Datasets
cointegrated/nli-rus-translated-v2021
Lang: RU
Rows: 19647
Preprocess:
Select
devsplit.Filter the dataset by the column
sourcewith the valuemnli.This step you should implement in
stubs.labs.lab_7_llm.main.RawDataImporter.obtain().
Leave only columns
premise_ru,hypothesis_ruandlabel.Rename column
premise_rutopremise.Rename column
hypothesis_rutohypothesis.Rename column
labeltotarget.Delete empty rows in dataset.
Delete duplicates in dataset.
Map
targetwith class labels.Reset indexes.
-
Lang: RU
Rows: 307
Preprocess:
Select
terrasubset.Rename column
labeltotarget.Delete duplicates in dataset.
Delete empty rows in dataset.
Reset indexes.
-
Lang: RU
Rows: 2490
Preprocess:
Select
rusubset.Rename column
labeltotarget.Delete duplicates in dataset.
Delete empty rows in dataset.
Reset indexes.
-
Lang: EN
Rows: 5463
Preprocess:
Select
qnlisubset.Rename column
questiontopremise.Rename column
sentencetohypothesis.Rename column
labeltotarget.Delete duplicates in dataset.
Delete empty rows in dataset.
Map
targetwith class labels.Reset indexes.
-
Lang: EN
Rows: 9815
Preprocess:
Select
mnlisubset.Rename column
labeltotarget.Delete duplicates in dataset.
Delete empty rows in dataset.
Reset indexes.
Supervised Fine-Tuning (SFT) Parameters
Note
Set the parameter learning_rate=1e-2 for the
cointegrated/rubert-tiny-bilingual-nli
model as SFT parameter.
Metrics
Accuracy