lab_settings package

Submodules

Settings manager.

class core_utils.project.lab_settings.InferenceParams(num_samples: int, max_length: int, batch_size: int, predictions_path: Path, device: str)

Bases: object

Inference parameters.

__init__(*args: Any, **kwargs: Any) None
batch_size: int
device: str
max_length: int
num_samples: int
predictions_path: Path
class core_utils.project.lab_settings.LabSettings(config_path: Path)

Bases: object

Main model for working with settings.

__init__(config_path: Path) None

Initialize LabSettings.

Parameters:

config_path (pathlib.Path) – Path to configuration

_dto: LabSettingsModel
property parameters: ParametersModel | None

Property for additional parameters.

Returns:

Parameters DTO.

Return type:

ParametersModel | None

property target_score: int

Property for target score.

Returns:

A target score.

Return type:

int

class core_utils.project.lab_settings.LabSettingsModel(parameters: ParametersModel | None, target_score: int)

Bases: object

DTO for storing labs settings.

__init__(*args: Any, **kwargs: Any) None
parameters: ParametersModel | None
target_score: int
class core_utils.project.lab_settings.ParametersModel(model: str, dataset: str, metrics: list[Metrics])

Bases: object

Additional parameters of a lab.

__init__(*args: Any, **kwargs: Any) None
dataset: str
metrics: list[Metrics]
model: str
class core_utils.project.lab_settings.SFTParams(max_length: int, batch_size: int, max_fine_tuning_steps: int, device: str, finetuned_model_path: Path, learning_rate: float, rank: int, alpha: int, target_modules: list[str] | None = None)

Bases: object

Fine-tuning parameters.

__init__(*args: Any, **kwargs: Any) None
alpha: int
batch_size: int
device: str
finetuned_model_path: Path
learning_rate: float
max_fine_tuning_steps: int
max_length: int
rank: int
target_modules: list[str] | None = None